We use Intersection over Union (IoU) and Overall Accuracy (OA) as metrics. For more details hover the curser over the symbols or click on a classifier. In order to sort the results differently click on a symbol.
Name | A_IoU | OA | [s] | IoU 1 | IoU 2 | IoU 3 | IoU 4 | IoU 5 | IoU 6 | IoU 7 | IoU 8 | |
1 | EU_IMP | 0.796 | 0.955 | 1.00 | 0.976 | 0.944 | 0.912 | 0.628 | 0.960 | 0.504 | 0.676 | 0.767 |
Anonymous submission | ||||||||||||
2 | GACNet | 0.708 | 0.919 | 1380.00 | 0.864 | 0.777 | 0.885 | 0.606 | 0.942 | 0.373 | 0.435 | 0.778 |
Anonymous submission | ||||||||||||
3 | AI_Lab-NIE | 0.792 | 0.955 | 1.00 | 0.972 | 0.942 | 0.890 | 0.572 | 0.964 | 0.503 | 0.713 | 0.777 |
Anonymous submission | ||||||||||||
4 | EHNet | 0.742 | 0.921 | 11.72 | 0.851 | 0.755 | 0.896 | 0.559 | 0.955 | 0.508 | 0.483 | 0.925 |
Semantic Segmentation of Terrestrial Laser Scanning Point Clouds Using Locally Enhanced Image-Based Geometric Representations (IEEE Transactions on Geoscience and Remote Sensing) http://dx.doi.org/10.1109/TGRS.2022.3161982 | ||||||||||||
5 | TBDV2 | 0.800 | 0.954 | 1.00 | 0.971 | 0.935 | 0.868 | 0.551 | 0.959 | 0.531 | 0.753 | 0.829 |
Anonymous submission | ||||||||||||
6 | c3 | 0.778 | 0.946 | 600.00 | 0.975 | 0.949 | 0.870 | 0.549 | 0.942 | 0.428 | 0.720 | 0.788 |
Anonymous submission | ||||||||||||
7 | RFCR | 0.778 | 0.943 | 1.00 | 0.942 | 0.891 | 0.857 | 0.544 | 0.950 | 0.438 | 0.762 | 0.837 |
Omni-supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning (CVPR2021) | ||||||||||||
8 | CASIA_VSLab | 0.720 | 0.902 | 243.06 | 0.793 | 0.829 | 0.913 | 0.536 | 0.888 | 0.454 | 0.633 | 0.718 |
Anonymous submission | ||||||||||||
9 | LGS-Net | 0.790 | 0.953 | 432.00 | 0.976 | 0.946 | 0.857 | 0.536 | 0.960 | 0.519 | 0.730 | 0.800 |
Anonymous submission | ||||||||||||
10 | PG_Net | 0.772 | 0.944 | 0.00 | 0.947 | 0.888 | 0.875 | 0.534 | 0.953 | 0.528 | 0.655 | 0.793 |
Kangcheng Liu, and Ben M. Chen. (FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling) https://arxiv.org/abs/2012.09439 | ||||||||||||
11 | shao473 | 0.786 | 0.952 | 1.00 | 0.971 | 0.934 | 0.872 | 0.533 | 0.957 | 0.526 | 0.691 | 0.804 |
Anonymous submission | ||||||||||||
12 | XPCONVP | 0.778 | 0.946 | 111.00 | 0.971 | 0.911 | 0.879 | 0.532 | 0.948 | 0.415 | 0.757 | 0.811 |
Anonymous submission | ||||||||||||
13 | AnchorConv_AR | 0.777 | 0.949 | 111.00 | 0.976 | 0.930 | 0.857 | 0.531 | 0.951 | 0.421 | 0.721 | 0.827 |
Anonymous submission | ||||||||||||
14 | IGDC | 0.783 | 0.951 | 2.00 | 0.977 | 0.940 | 0.879 | 0.526 | 0.953 | 0.467 | 0.722 | 0.799 |
Anonymous submission | ||||||||||||
15 | PCSNet | 0.712 | 0.943 | 1500.00 | 0.971 | 0.950 | 0.879 | 0.525 | 0.941 | 0.388 | 0.355 | 0.687 |
16 | RSSP | 0.647 | 0.920 | 359.00 | 0.916 | 0.870 | 0.870 | 0.525 | 0.930 | 0.158 | 0.320 | 0.589 |
Anonymous submission | ||||||||||||
17 | BRNet_0910_2 | 0.777 | 0.950 | 1.00 | 0.973 | 0.941 | 0.877 | 0.522 | 0.955 | 0.482 | 0.677 | 0.790 |
Anonymous submission | ||||||||||||
18 | LCDE-Net | 0.786 | 0.950 | 100.00 | 0.978 | 0.940 | 0.851 | 0.518 | 0.952 | 0.443 | 0.739 | 0.866 |
Anonymous submission | ||||||||||||
19 | FilterNet | 0.731 | 0.930 | 100.00 | 0.898 | 0.832 | 0.865 | 0.515 | 0.951 | 0.385 | 0.628 | 0.778 |
Anonymous submission | ||||||||||||
20 | RandLA-Net | 0.774 | 0.948 | 1.00 | 0.956 | 0.914 | 0.866 | 0.515 | 0.957 | 0.515 | 0.698 | 0.768 |
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020, Oral) | ||||||||||||
21 | ds | 0.774 | 0.948 | 23.00 | 0.956 | 0.914 | 0.866 | 0.515 | 0.957 | 0.515 | 0.698 | 0.768 |
22 | shao377 | 0.780 | 0.951 | 1.00 | 0.976 | 0.925 | 0.873 | 0.514 | 0.961 | 0.526 | 0.651 | 0.814 |
Anonymous submission | ||||||||||||
23 | AIC-Net | 0.780 | 0.951 | 383.30 | 0.976 | 0.925 | 0.873 | 0.514 | 0.961 | 0.526 | 0.651 | 0.814 |
Anonymous submission | ||||||||||||
24 | SCF-Net | 0.776 | 0.947 | 563.60 | 0.971 | 0.918 | 0.863 | 0.512 | 0.953 | 0.505 | 0.679 | 0.807 |
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation (CVPR2021) | ||||||||||||
25 | DenseKPNet | 0.779 | 0.949 | 1.00 | 0.979 | 0.927 | 0.888 | 0.512 | 0.950 | 0.450 | 0.709 | 0.816 |
Anonymous submission | ||||||||||||
26 | SPNet | 0.770 | 0.945 | 1300.00 | 0.975 | 0.900 | 0.892 | 0.511 | 0.951 | 0.421 | 0.727 | 0.786 |
Anonymous submission | ||||||||||||
27 | mpv7 | 0.747 | 0.934 | 265.00 | 0.938 | 0.852 | 0.855 | 0.509 | 0.944 | 0.400 | 0.690 | 0.790 |
Anonymous submission | ||||||||||||
28 | UDNV | 0.773 | 0.945 | 259200.00 | 0.957 | 0.903 | 0.844 | 0.505 | 0.954 | 0.459 | 0.727 | 0.832 |
Anonymous submission | ||||||||||||
29 | PyramidPoint | 0.773 | 0.945 | 1.00 | 0.957 | 0.903 | 0.844 | 0.505 | 0.954 | 0.459 | 0.727 | 0.832 |
https://arxiv.org/abs/2011.08692 | ||||||||||||
30 | FFA-Net | 0.764 | 0.949 | 158.50 | 0.977 | 0.946 | 0.854 | 0.503 | 0.952 | 0.454 | 0.612 | 0.814 |
Anonymous submission | ||||||||||||
31 | AGMMConv | 0.761 | 0.950 | 0.10 | 0.977 | 0.939 | 0.839 | 0.500 | 0.958 | 0.498 | 0.529 | 0.848 |
Adaptive GMM Convolution for Point Cloud Learning (BMVC2021) | ||||||||||||
32 | PAI_Conv | 0.764 | 0.944 | 1.00 | 0.964 | 0.904 | 0.867 | 0.496 | 0.956 | 0.454 | 0.690 | 0.784 |
Anonymous submission | ||||||||||||
33 | SPC | 0.752 | 0.943 | 100.00 | 0.976 | 0.931 | 0.836 | 0.484 | 0.947 | 0.429 | 0.586 | 0.826 |
Anonymous submission | ||||||||||||
34 | RGNet | 0.747 | 0.945 | 1.00 | 0.975 | 0.930 | 0.881 | 0.481 | 0.946 | 0.362 | 0.720 | 0.680 |
Fast Point Cloud Registration Using Semantic Segmentation - DICTA 2019 | ||||||||||||
35 | KP-FCNN | 0.746 | 0.929 | 600.00 | 0.909 | 0.822 | 0.842 | 0.479 | 0.949 | 0.400 | 0.773 | 0.797 |
@article{thomas2019KPConv, Author = {Thomas, Hugues and Qi, Charles R. and Deschaud, Jean-Emmanuel and Marcotegui, Beatriz and Goulette, Fran{c{c}}ois and Guibas, Leonidas J.}, Title = {KPConv: Flexible and Deformable Convolution for Point Clouds}, Journal = {The IEEE International Conference on Computer Vision (ICCV)}, Year = {2019} } | ||||||||||||
36 | CRFConv | 0.723 | 0.941 | 0.10 | 0.977 | 0.923 | 0.848 | 0.466 | 0.950 | 0.400 | 0.405 | 0.812 |
Anonymous submission | ||||||||||||
37 | PAI-Conv-v2 | 0.720 | 0.921 | 1.00 | 0.887 | 0.779 | 0.856 | 0.466 | 0.953 | 0.437 | 0.621 | 0.764 |
Anonymous submission | ||||||||||||
38 | AutoNN | 0.763 | 0.941 | 838.60 | 0.958 | 0.887 | 0.841 | 0.463 | 0.952 | 0.455 | 0.744 | 0.808 |
Anonymous submission | ||||||||||||
39 | CRFConv_big | 0.749 | 0.942 | 0.10 | 0.981 | 0.911 | 0.818 | 0.448 | 0.952 | 0.408 | 0.594 | 0.880 |
Anonymous submission | ||||||||||||
40 | SPGraph | 0.732 | 0.940 | 3000.00 | 0.974 | 0.926 | 0.879 | 0.440 | 0.932 | 0.310 | 0.635 | 0.762 |
Large-scale Point cloud segmentation with superpoint graphs, Loic Landrieu and Martin Simonovsky, CVPR2018 | ||||||||||||
41 | shao477 | 0.748 | 0.939 | 1.00 | 0.977 | 0.879 | 0.845 | 0.437 | 0.951 | 0.500 | 0.634 | 0.764 |
Anonymous submission | ||||||||||||
42 | MS-RRFSegnet | 0.725 | 0.930 | 2560.00 | 0.895 | 0.836 | 0.837 | 0.431 | 0.960 | 0.536 | 0.390 | 0.917 |
Anonymous submission | ||||||||||||
43 | shellnet_v2 | 0.693 | 0.932 | 3000.00 | 0.963 | 0.904 | 0.839 | 0.410 | 0.942 | 0.347 | 0.439 | 0.702 |
@inproceedings{zhang-shellnet-iccv19, title = {ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics}, author = {Zhiyuan Zhang and Binh-Son Hua and Sai-Kit Yeung}, booktitle = {International Conference on Computer Vision (ICCV)}, year = {2019} } | ||||||||||||
44 | SEGCloud | 0.613 | 0.881 | 1881.00 | 0.839 | 0.660 | 0.860 | 0.405 | 0.911 | 0.309 | 0.275 | 0.643 |
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017 | ||||||||||||
45 | shell_v2 | 0.685 | 0.932 | 3000.00 | 0.973 | 0.910 | 0.837 | 0.397 | 0.931 | 0.271 | 0.448 | 0.715 |
Anonymous submission | ||||||||||||
46 | OctreeNet_CRF | 0.591 | 0.899 | 184.84 | 0.907 | 0.820 | 0.824 | 0.393 | 0.900 | 0.109 | 0.312 | 0.460 |
F. Wang, Y. Zhuang, H. Gu, and H. Hu, OctreeNet:A Novel Sparse 3D Convolutional Neural Network for Real-time 3D Outdoor Scene Analysis, submitted to IEEE Transactions on Automation Science and Engineering. | ||||||||||||
47 | DG | 0.682 | 0.912 | 23.84 | 0.965 | 0.869 | 0.818 | 0.382 | 0.916 | 0.287 | 0.558 | 0.658 |
Anonymous submission | ||||||||||||
48 | MSDeepVoxNet | 0.653 | 0.884 | 115000.00 | 0.830 | 0.672 | 0.838 | 0.367 | 0.924 | 0.313 | 0.500 | 0.782 |
Classification of Point Cloud Scenes with Multiscale Voxel Deep Network, Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette | ||||||||||||
49 | RF_MSSF | 0.627 | 0.903 | 1643.75 | 0.876 | 0.803 | 0.818 | 0.364 | 0.922 | 0.241 | 0.426 | 0.566 |
@inproceedings{thomas2018semantic, title={Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods}, author={Thomas, Hugues and Deschaud, Jean-Emmanuel and Marcotegui, Beatriz and Goulette, Francois and Le Gall, Yann}, booktitle={3D Vision (3DV), 2018 International Conference on}, year={2018}, organization={IEEE} } | ||||||||||||
50 | LU-1 | 0.706 | 0.915 | 18.45 | 0.952 | 0.889 | 0.815 | 0.362 | 0.913 | 0.334 | 0.602 | 0.779 |
surveying and mapping institute | ||||||||||||
51 | NI_IMP_EU_TEST1 | 0.556 | 0.859 | 2400.00 | 0.857 | 0.828 | 0.778 | 0.360 | 0.887 | 0.228 | 0.416 | 0.093 |
IMP EU SunWei | ||||||||||||
52 | OctFCNNet | 0.648 | 0.894 | 1200.00 | 0.943 | 0.756 | 0.786 | 0.342 | 0.904 | 0.257 | 0.478 | 0.721 |
Anonymous submission | ||||||||||||
53 | DeePr3SS | 0.585 | 0.889 | 0.00 | 0.856 | 0.832 | 0.742 | 0.324 | 0.897 | 0.185 | 0.251 | 0.592 |
@misc{1705.03428, Author = {Felix Järemo Lawin and Martin Danelljan and Patrik Tosteberg and Goutam Bhat and Fahad Shahbaz Khan and Michael Felsberg}, Title = {Deep Projective 3D Semantic Segmentation}, Year = {2017}, Eprint = {arXiv:1705.03428}, } | ||||||||||||
54 | 10GRU | 0.673 | 0.911 | 10800.00 | 0.975 | 0.769 | 0.840 | 0.319 | 0.935 | 0.262 | 0.587 | 0.700 |
Anonymous submission | ||||||||||||
55 | XJTLU | 0.635 | 0.894 | 5.13 | 0.854 | 0.744 | 0.746 | 0.319 | 0.930 | 0.252 | 0.415 | 0.820 |
Cai Y, Huang H, Wang K, Zhang C, Fan L, Guo F. Selecting Optimal Combination of Data Channels for Semantic Segmentation in City Information Modelling (CIM). Remote Sensing. 2021; 13(7):1367. https://doi.org/10.3390/rs13071367 | ||||||||||||
56 | 3D-FCNN-TI | 0.582 | 0.875 | 774.00 | 0.840 | 0.711 | 0.770 | 0.318 | 0.899 | 0.277 | 0.252 | 0.590 |
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017 | ||||||||||||
57 | DLUT_SR | 0.563 | 0.860 | 1.00 | 0.953 | 0.849 | 0.548 | 0.296 | 0.832 | 0.192 | 0.320 | 0.518 |
Anonymous submission | ||||||||||||
58 | DeepVoxNet | 0.571 | 0.848 | 100000.00 | 0.827 | 0.531 | 0.838 | 0.287 | 0.899 | 0.236 | 0.298 | 0.650 |
Classification of Point Cloud Scenes with Multiscale Voxel Deep Network, Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette | ||||||||||||
59 | TMLC-MSR | 0.542 | 0.862 | 1800.00 | 0.898 | 0.745 | 0.537 | 0.268 | 0.888 | 0.189 | 0.364 | 0.447 |
Timo Hackel, Jan D. Wegner, Konrad Schindler: Fast semantic segmentation of 3d point clouds with strongly varying density. ISPRS Annals - ISPRS Congress, Prague, 2016 | ||||||||||||
60 | 10GRUDeep3 | 0.468 | 0.790 | 10800.00 | 0.475 | 0.481 | 0.692 | 0.268 | 0.920 | 0.180 | 0.309 | 0.422 |
Anonymous submission | ||||||||||||
61 | sem3drandlanet | 0.648 | 0.882 | 136.20 | 0.909 | 0.642 | 0.780 | 0.264 | 0.915 | 0.301 | 0.623 | 0.750 |
Anonymous submission | ||||||||||||
62 | new_net | 0.595 | 0.879 | 100000.00 | 0.845 | 0.709 | 0.766 | 0.261 | 0.914 | 0.186 | 0.565 | 0.514 |
@inproceedings{contreras2019edge, title={Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds}, author={Contreras, Jhonatan and Denzler, Joachim}, booktitle={IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium}, pages={5236--5239}, year={2019}, organization={IEEE} } | ||||||||||||
63 | ThickSeg3D | 0.525 | 0.864 | 228.01 | 0.837 | 0.738 | 0.553 | 0.260 | 0.905 | 0.141 | 0.256 | 0.510 |
Anonymous submission | ||||||||||||
64 | NLNN | 0.203 | 0.539 | 1.00 | 0.000 | 0.000 | 0.864 | 0.251 | 0.506 | 0.000 | 0.000 | 0.000 |
Anonymous submission | ||||||||||||
65 | SnapNet_ | 0.591 | 0.886 | 3600.00 | 0.820 | 0.773 | 0.797 | 0.229 | 0.911 | 0.184 | 0.373 | 0.644 |
Unstructured point cloud semantic labeling using deep segmentation networks. A. Boulch, B. Le Saux and N. Audebert, Eurographics 3DOR 2017 | ||||||||||||
66 | TML-PCR | 0.384 | 0.740 | 0.00 | 0.726 | 0.730 | 0.485 | 0.224 | 0.707 | 0.050 | 0.000 | 0.150 |
Mind the gap: modeling local and global context in (road) networks: Javier Montoya, Jan D. Wegner, Lubor Ladicky, Konrad Schindler. In: German Conference on Pattern Recognition (GCPR), Münster, Germany, 2014 | ||||||||||||
67 | ProNet | 0.616 | 0.909 | 1.00 | 0.940 | 0.858 | 0.808 | 0.205 | 0.908 | 0.248 | 0.290 | 0.673 |
Anonymous submission | ||||||||||||
68 | ACNNs | 0.613 | 0.908 | 1.00 | 0.940 | 0.862 | 0.804 | 0.185 | 0.904 | 0.245 | 0.290 | 0.673 |
Anonymous submission | ||||||||||||
69 | DeepNet | 0.437 | 0.772 | 64800.00 | 0.838 | 0.385 | 0.548 | 0.085 | 0.841 | 0.151 | 0.223 | 0.423 |
Anonymous submission | ||||||||||||
70 | WYJ_JTP | 0.002 | 0.006 | 1000.00 | 0.001 | 0.000 | 0.001 | 0.005 | 0.004 | 0.007 | 0.000 | 0.000 |
Anonymous submission | ||||||||||||
71 | lixu_163_test | 0.003 | 0.005 | 231.50 | 0.005 | 0.000 | 0.004 | 0.002 | 0.004 | 0.005 | 0.001 | 0.000 |
Anonymous submission |
@inproceedings{hackel2017isprs,
title={{SEMANTIC3D.NET: A new large-scale point cloud classification benchmark}},
author={Timo Hackel and N. Savinov and L. Ladicky and Jan D. Wegner and K. Schindler and M. Pollefeys},
booktitle={ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
year = {2017},
volume = {IV-1-W1},
pages = {91--98}
}